/* * Copyright (c) 2019 dsafa22 and 2014 Joakim Plate, modified by Florian Draschbacher, * All Rights Reserved. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. */ // Some of the code in here comes from https://github.com/juhovh/shairplay/pull/25/files #include #include #include #include #include #include "raop_ntp.h" #include "threads.h" #include "compat.h" #include "netutils.h" #include "byteutils.h" #define RAOP_NTP_DATA_COUNT 8 #define RAOP_NTP_PHI_PPM 15ull // PPM #define RAOP_NTP_R_RHO ((1ull << 32) / 1000u) // packet precision #define RAOP_NTP_S_RHO ((1ull << 32) / 1000u) // system clock precision #define RAOP_NTP_MAX_DIST ((1500ull << 32) / 1000u) // maximum allowed distance #define RAOP_NTP_MAX_DISP ((16ull << 32)) // maximum dispersion #define RAOP_NTP_CLOCK_BASE (2208988800ull << 32) typedef struct raop_ntp_data_s { uint64_t time; // The local wall clock time at time of ntp packet arrival uint64_t dispersion; int64_t delay; // The round trip delay int64_t offset; // The difference between remote and local wall clock time } raop_ntp_data_t; struct raop_ntp_s { logger_t *logger; thread_handle_t thread; mutex_handle_t run_mutex; mutex_handle_t wait_mutex; cond_handle_t wait_cond; raop_ntp_data_t data[RAOP_NTP_DATA_COUNT]; int data_index; // The clock sync params are periodically updated to the AirPlay client's NTP clock mutex_handle_t sync_params_mutex; int64_t sync_offset; int64_t sync_dispersion; int64_t sync_delay; // Socket address of the AirPlay client struct sockaddr_storage remote_saddr; socklen_t remote_saddr_len; // The remote port of the NTP server on the AirPlay client unsigned short timing_rport; // The local port of the NTP client on the AirPlay server unsigned short timing_lport; /* MUTEX LOCKED VARIABLES START */ /* These variables only edited mutex locked */ int running; int joined; // UDP socket int tsock; }; /* * Used for sorting the data array by delay */ static int raop_ntp_compare(const void* av, const void* bv) { const raop_ntp_data_t* a = (const raop_ntp_data_t*)av; const raop_ntp_data_t* b = (const raop_ntp_data_t*)bv; if (a->delay < b->delay) { return -1; } else if(a->delay > b->delay) { return 1; } else { return 0; } } static int raop_ntp_parse_remote_address(raop_ntp_t *raop_ntp, const unsigned char *remote_addr, int remote_addr_len) { char current[25]; int family; int ret; assert(raop_ntp); if (remote_addr_len == 4) { family = AF_INET; } else if (remote_addr_len == 16) { family = AF_INET6; } else { return -1; } memset(current, 0, sizeof(current)); sprintf(current, "%d.%d.%d.%d", remote_addr[0], remote_addr[1], remote_addr[2], remote_addr[3]); logger_log(raop_ntp->logger, LOGGER_DEBUG, "raop_ntp parse remote ip = %s", current); ret = netutils_parse_address(family, current, &raop_ntp->remote_saddr, sizeof(raop_ntp->remote_saddr)); if (ret < 0) { return -1; } raop_ntp->remote_saddr_len = ret; return 0; } raop_ntp_t *raop_ntp_init(logger_t *logger, const unsigned char *remote_addr, int remote_addr_len, unsigned short timing_rport) { raop_ntp_t *raop_ntp; assert(logger); raop_ntp = calloc(1, sizeof(raop_ntp_t)); if (!raop_ntp) { return NULL; } raop_ntp->logger = logger; raop_ntp->timing_rport = timing_rport; if (raop_ntp_parse_remote_address(raop_ntp, remote_addr, remote_addr_len) < 0) { free(raop_ntp); return NULL; } // Set port on the remote address struct ((struct sockaddr_in *) &raop_ntp->remote_saddr)->sin_port = htons(timing_rport); raop_ntp->running = 0; raop_ntp->joined = 1; uint64_t time = raop_ntp_get_local_time(raop_ntp); for (int i = 0; i < RAOP_NTP_DATA_COUNT; ++i) { raop_ntp->data[i].offset = 0ll; raop_ntp->data[i].delay = RAOP_NTP_MAX_DISP; raop_ntp->data[i].dispersion = RAOP_NTP_MAX_DISP; raop_ntp->data[i].time = time; } raop_ntp->sync_delay = 0; raop_ntp->sync_dispersion = 0; raop_ntp->sync_offset = 0; MUTEX_CREATE(raop_ntp->run_mutex); MUTEX_CREATE(raop_ntp->wait_mutex); COND_CREATE(raop_ntp->wait_cond); MUTEX_CREATE(raop_ntp->sync_params_mutex); return raop_ntp; } void raop_ntp_destroy(raop_ntp_t *raop_ntp) { if (raop_ntp) { raop_ntp_stop(raop_ntp); MUTEX_DESTROY(raop_ntp->run_mutex); MUTEX_DESTROY(raop_ntp->wait_mutex); COND_DESTROY(raop_ntp->wait_cond); MUTEX_DESTROY(raop_ntp->sync_params_mutex); free(raop_ntp); } } unsigned short raop_ntp_get_port(raop_ntp_t *raop_ntp) { return raop_ntp->timing_lport; } static int raop_ntp_init_socket(raop_ntp_t *raop_ntp, int use_ipv6) { int tsock = -1; unsigned short tport = 0; assert(raop_ntp); tsock = netutils_init_socket(&tport, use_ipv6, 1); if (tsock == -1) { goto sockets_cleanup; } // We're calling recvfrom without knowing whether there is any data, so we need a timeout struct timeval tv; tv.tv_sec = 0; tv.tv_usec = 3000; if (setsockopt(tsock, SOL_SOCKET, SO_RCVTIMEO, &tv, sizeof(tv)) < 0) { goto sockets_cleanup; } /* Set socket descriptors */ raop_ntp->tsock = tsock; /* Set port values */ raop_ntp->timing_lport = tport; return 0; sockets_cleanup: if (tsock != -1) closesocket(tsock); return -1; } static THREAD_RETVAL raop_ntp_thread(void *arg) { raop_ntp_t *raop_ntp = arg; assert(raop_ntp); unsigned char response[128]; int response_len; unsigned char request[32] = {0x80, 0xd2, 0x00, 0x07, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; raop_ntp_data_t data_sorted[RAOP_NTP_DATA_COUNT]; const unsigned two_pow_n[RAOP_NTP_DATA_COUNT] = {2, 4, 8, 16, 32, 64, 128, 256}; while (1) { MUTEX_LOCK(raop_ntp->run_mutex); if (!raop_ntp->running) { MUTEX_UNLOCK(raop_ntp->run_mutex); break; } MUTEX_UNLOCK(raop_ntp->run_mutex); // Send request uint64_t send_time = raop_ntp_get_local_time(raop_ntp); byteutils_put_ntp_timestamp(request, 24, send_time); int send_len = sendto(raop_ntp->tsock, (char *)request, sizeof(request), 0, (struct sockaddr *) &raop_ntp->remote_saddr, raop_ntp->remote_saddr_len); logger_log(raop_ntp->logger, LOGGER_DEBUG, "raop_ntp send_len = %d", send_len); if (send_len < 0) { logger_log(raop_ntp->logger, LOGGER_ERR, "raop_ntp error sending request"); break; } // Read response response_len = recvfrom(raop_ntp->tsock, (char *)response, sizeof(response), 0, (struct sockaddr *) &raop_ntp->remote_saddr, &raop_ntp->remote_saddr_len); if (response_len < 0) { logger_log(raop_ntp->logger, LOGGER_ERR, "raop_ntp receive timeout"); break; } logger_log(raop_ntp->logger, LOGGER_DEBUG, "raop_ntp receive time type_t packetlen = %d", response_len); int64_t t3 = (int64_t) raop_ntp_get_local_time(raop_ntp); // Local time of the client when the NTP request packet leaves the client int64_t t0 = (int64_t) byteutils_get_ntp_timestamp(response, 8); // Local time of the server when the NTP request packet arrives at the server int64_t t1 = (int64_t) byteutils_get_ntp_timestamp(response, 16); // Local time of the server when the response message leaves the server int64_t t2 = (int64_t) byteutils_get_ntp_timestamp(response, 24); // The iOS device sends its time in micro seconds relative to an arbitrary Epoch (the last boot). // For a little bonus confusion, they add SECONDS_FROM_1900_TO_1970 * 1000000 us. // This means we have to expect some rather huge offset, but its growth or shrink over time should be small. raop_ntp->data_index = (raop_ntp->data_index + 1) % RAOP_NTP_DATA_COUNT; raop_ntp->data[raop_ntp->data_index].time = t3; raop_ntp->data[raop_ntp->data_index].offset = ((t1 - t0) + (t2 - t3)) / 2; raop_ntp->data[raop_ntp->data_index].delay = ((t3 - t0) - (t2 - t1)); raop_ntp->data[raop_ntp->data_index].dispersion = RAOP_NTP_R_RHO + RAOP_NTP_S_RHO + (t3 - t0) * RAOP_NTP_PHI_PPM / 1000000u; // Sort by delay memcpy(data_sorted, raop_ntp->data, sizeof(data_sorted)); qsort(data_sorted, RAOP_NTP_DATA_COUNT, sizeof(data_sorted[0]), raop_ntp_compare); uint64_t dispersion = 0ull; int64_t offset = data_sorted[0].offset; int64_t delay = data_sorted[RAOP_NTP_DATA_COUNT - 1].delay; // Calculate dispersion for(int i = 0; i < RAOP_NTP_DATA_COUNT; ++i) { unsigned long long disp = raop_ntp->data[i].dispersion + (t3 - raop_ntp->data[i].time) * RAOP_NTP_PHI_PPM / 1000000u; dispersion += disp / two_pow_n[i]; } MUTEX_LOCK(raop_ntp->sync_params_mutex); int64_t correction = offset - raop_ntp->sync_offset; raop_ntp->sync_offset = offset; raop_ntp->sync_dispersion = dispersion; raop_ntp->sync_delay = delay; MUTEX_UNLOCK(raop_ntp->sync_params_mutex); logger_log(raop_ntp->logger, LOGGER_DEBUG, "raop_ntp sync correction = %lld", correction); // Sleep for 3 seconds struct timeval now; struct timespec wait_time; MUTEX_LOCK(raop_ntp->wait_mutex); gettimeofday(&now, NULL); wait_time.tv_sec = now.tv_sec + 3; wait_time.tv_nsec = now.tv_usec * 1000; pthread_cond_timedwait(&raop_ntp->wait_cond, &raop_ntp->wait_mutex, &wait_time); MUTEX_UNLOCK(raop_ntp->wait_mutex); } // Ensure running reflects the actual state MUTEX_LOCK(raop_ntp->run_mutex); raop_ntp->running = false; MUTEX_UNLOCK(raop_ntp->run_mutex); logger_log(raop_ntp->logger, LOGGER_DEBUG, "raop_ntp exiting thread"); return 0; } void raop_ntp_start(raop_ntp_t *raop_ntp, unsigned short *timing_lport) { logger_log(raop_ntp->logger, LOGGER_DEBUG, "raop_ntp starting time"); int use_ipv6 = 0; assert(raop_ntp); MUTEX_LOCK(raop_ntp->run_mutex); if (raop_ntp->running || !raop_ntp->joined) { MUTEX_UNLOCK(raop_ntp->run_mutex); return; } /* Initialize ports and sockets */ if (raop_ntp->remote_saddr.ss_family == AF_INET6) { use_ipv6 = 1; } use_ipv6 = 0; if (raop_ntp_init_socket(raop_ntp, use_ipv6) < 0) { logger_log(raop_ntp->logger, LOGGER_ERR, "raop_ntp initializing timing socket failed"); MUTEX_UNLOCK(raop_ntp->run_mutex); return; } if (timing_lport) *timing_lport = raop_ntp->timing_lport; /* Create the thread and initialize running values */ raop_ntp->running = 1; raop_ntp->joined = 0; THREAD_CREATE(raop_ntp->thread, raop_ntp_thread, raop_ntp); MUTEX_UNLOCK(raop_ntp->run_mutex); } void raop_ntp_stop(raop_ntp_t *raop_ntp) { assert(raop_ntp); /* Check that we are running and thread is not * joined (should never be while still running) */ MUTEX_LOCK(raop_ntp->run_mutex); if (!raop_ntp->running || raop_ntp->joined) { MUTEX_UNLOCK(raop_ntp->run_mutex); return; } raop_ntp->running = 0; MUTEX_UNLOCK(raop_ntp->run_mutex); logger_log(raop_ntp->logger, LOGGER_DEBUG, "raop_ntp stopping time thread"); MUTEX_LOCK(raop_ntp->wait_mutex); COND_SIGNAL(raop_ntp->wait_cond); MUTEX_UNLOCK(raop_ntp->wait_mutex); if (raop_ntp->tsock != -1) { closesocket(raop_ntp->tsock); raop_ntp->tsock = -1; } THREAD_JOIN(raop_ntp->thread); logger_log(raop_ntp->logger, LOGGER_DEBUG, "raop_ntp stopped time thread"); /* Mark thread as joined */ MUTEX_LOCK(raop_ntp->run_mutex); raop_ntp->joined = 1; MUTEX_UNLOCK(raop_ntp->run_mutex); } /** * Converts from a little endian ntp timestamp to micro seconds since the Unix epoch. * Does the same thing as byteutils_get_ntp_timestamp, except its input is an uint64_t * and expected to already be in little endian. * Please note this just converts to a different representation, the clock remains the * same. */ uint64_t raop_ntp_timestamp_to_micro_seconds(uint64_t ntp_timestamp, bool account_for_epoch_diff) { uint64_t seconds = ((ntp_timestamp >> 32) & 0xffffffff) - (account_for_epoch_diff ? SECONDS_FROM_1900_TO_1970 : 0); uint64_t fraction = (ntp_timestamp & 0xffffffff); return (seconds * 1000000) + ((fraction * 1000000) >> 32); } /** * Returns the current time in micro seconds according to the local wall clock. * The system Unix time is used as the local wall clock. */ uint64_t raop_ntp_get_local_time(raop_ntp_t *raop_ntp) { struct timespec time; clock_gettime(CLOCK_REALTIME, &time); return (uint64_t)time.tv_sec * 1000000L + (uint64_t)(time.tv_nsec / 1000); } /** * Returns the current time in micro seconds according to the remote wall clock. */ uint64_t raop_ntp_get_remote_time(raop_ntp_t *raop_ntp) { MUTEX_LOCK(raop_ntp->sync_params_mutex); int64_t offset = raop_ntp->sync_offset; MUTEX_UNLOCK(raop_ntp->sync_params_mutex); return (uint64_t) ((int64_t) raop_ntp_get_local_time(raop_ntp)) + ((int64_t) offset); } /** * Returns the local wall clock time in micro seconds for the given point in remote clock time */ uint64_t raop_ntp_convert_remote_time(raop_ntp_t *raop_ntp, uint64_t remote_time) { MUTEX_LOCK(raop_ntp->sync_params_mutex); uint64_t offset = raop_ntp->sync_offset; MUTEX_UNLOCK(raop_ntp->sync_params_mutex); return (uint64_t) ((int64_t) remote_time) - ((int64_t) offset); } /** * Returns the remote wall clock time in micro seconds for the given point in local clock time */ uint64_t raop_ntp_convert_local_time(raop_ntp_t *raop_ntp, uint64_t local_time) { MUTEX_LOCK(raop_ntp->sync_params_mutex); uint64_t offset = raop_ntp->sync_offset; MUTEX_UNLOCK(raop_ntp->sync_params_mutex); return (uint64_t) ((int64_t) local_time) + ((int64_t) offset); }