Files
AirplayServer/lib/crypto.c
2020-04-19 14:49:21 +02:00

210 lines
5.6 KiB
C

/**
* RPiPlay - An open-source AirPlay mirroring server for Raspberry Pi
* Copyright (C) 2019 Florian Draschbacher
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "crypto.h"
#include <openssl/evp.h>
#include <openssl/err.h>
#include <assert.h>
#include <string.h>
#include <stdbool.h>
struct aes_ctx_s {
EVP_CIPHER_CTX *cipher_ctx;
uint8_t key[AES_128_BLOCK_SIZE];
uint8_t iv[AES_128_BLOCK_SIZE];
aes_direction_t direction;
uint8_t block_offset;
};
uint8_t waste[AES_128_BLOCK_SIZE];
// Common AES utilities
void handle_error(const char* location) {
long error = ERR_get_error();
const char* error_str = ERR_error_string(error, NULL);
printf("Crypto error at %s: %s\n", location, error_str);
assert(false);
}
aes_ctx_t *aes_init(const uint8_t *key, const uint8_t *iv, const EVP_CIPHER *type, aes_direction_t direction) {
aes_ctx_t *ctx = malloc(sizeof(aes_ctx_t));
assert(ctx != NULL);
ctx->cipher_ctx = EVP_CIPHER_CTX_new();
assert(ctx->cipher_ctx != NULL);
ctx->block_offset = 0;
ctx->direction = direction;
if (direction == AES_ENCRYPT) {
if (!EVP_EncryptInit_ex(ctx->cipher_ctx, type, NULL, key, iv)) {
handle_error(__func__);
}
} else {
if (!EVP_DecryptInit_ex(ctx->cipher_ctx, type, NULL, key, iv)) {
handle_error(__func__);
}
}
memcpy(ctx->key, key, AES_128_BLOCK_SIZE);
memcpy(ctx->iv, iv, AES_128_BLOCK_SIZE);
return ctx;
}
void aes_encrypt(aes_ctx_t *ctx, const uint8_t *in, uint8_t *out, int in_len) {
int out_len = 0;
if (!EVP_EncryptUpdate(ctx->cipher_ctx, out, &out_len, in, in_len)) {
handle_error(__func__);
}
assert(out_len <= in_len);
}
void aes_decrypt(aes_ctx_t *ctx, const uint8_t *in, uint8_t *out, int in_len) {
int out_len = 0;
if (!EVP_DecryptUpdate(ctx->cipher_ctx, out, &out_len, in, in_len)) {
handle_error(__func__);
}
assert(out_len <= in_len);
}
void aes_destroy(aes_ctx_t *ctx) {
if (ctx) {
EVP_CIPHER_CTX_free(ctx->cipher_ctx);
free(ctx);
}
}
void aes_reset(aes_ctx_t *ctx, const EVP_CIPHER *type, aes_direction_t direction) {
if (!EVP_CIPHER_CTX_reset(ctx->cipher_ctx)) {
handle_error(__func__);
}
if (direction == AES_ENCRYPT) {
if (!EVP_EncryptInit_ex(ctx->cipher_ctx, type, NULL, ctx->key, ctx->iv)) {
handle_error(__func__);
}
} else {
if (!EVP_DecryptInit_ex(ctx->cipher_ctx, type, NULL, ctx->key, ctx->iv)) {
handle_error(__func__);
}
}
}
// AES CTR
aes_ctx_t *aes_ctr_init(const uint8_t *key, const uint8_t *iv) {
return aes_init(key, iv, EVP_aes_128_ctr(), AES_ENCRYPT);
}
void aes_ctr_encrypt(aes_ctx_t *ctx, const uint8_t *in, uint8_t *out, int len) {
aes_encrypt(ctx, in, out, len);
ctx->block_offset = (ctx->block_offset + len) % AES_128_BLOCK_SIZE;
}
void aes_ctr_start_fresh_block(aes_ctx_t *ctx) {
// Is there a better way to do this?
if (ctx->block_offset == 0) return;
aes_ctr_encrypt(ctx, waste, waste, AES_128_BLOCK_SIZE - ctx->block_offset);
}
void aes_ctr_decrypt(aes_ctx_t *ctx, const uint8_t *in, uint8_t *out, int len) {
aes_encrypt(ctx, in, out, len);
}
void aes_ctr_reset(aes_ctx_t *ctx) {
aes_reset(ctx, EVP_aes_128_ctr(), AES_ENCRYPT);
}
void aes_ctr_destroy(aes_ctx_t *ctx) {
aes_destroy(ctx);
}
// AES CBC
aes_ctx_t *aes_cbc_init(const uint8_t *key, const uint8_t *iv, aes_direction_t direction) {
return aes_init(key, iv, EVP_aes_128_cbc(), direction);
}
void aes_cbc_encrypt(aes_ctx_t *ctx, const uint8_t *in, uint8_t *out, int len) {
assert(ctx->direction == AES_ENCRYPT);
aes_encrypt(ctx, in, out, len);
}
void aes_cbc_decrypt(aes_ctx_t *ctx, const uint8_t *in, uint8_t *out, int len) {
assert(ctx->direction == AES_DECRYPT);
aes_decrypt(ctx, in, out, len);
}
void aes_cbc_reset(aes_ctx_t *ctx) {
aes_reset(ctx, EVP_aes_128_ctr(), ctx->direction);
}
void aes_cbc_destroy(aes_ctx_t *ctx) {
aes_destroy(ctx);
}
// SHA 512
struct sha_ctx_s {
EVP_MD_CTX *digest_ctx;
};
sha_ctx_t *sha_init() {
sha_ctx_t *ctx = malloc(sizeof(sha_ctx_t));
assert(ctx != NULL);
ctx->digest_ctx = EVP_MD_CTX_new();
assert(ctx->digest_ctx != NULL);
if (!EVP_DigestInit_ex(ctx->digest_ctx, EVP_sha512(), NULL)) {
handle_error(__func__);
}
return ctx;
}
void sha_update(sha_ctx_t *ctx, const uint8_t *in, int len) {
if (!EVP_DigestUpdate(ctx->digest_ctx, in, len)) {
handle_error(__func__);
}
}
void sha_final(sha_ctx_t *ctx, uint8_t *out, unsigned int *len) {
if (!EVP_DigestFinal_ex(ctx->digest_ctx, out, len)) {
handle_error(__func__);
}
}
void sha_reset(sha_ctx_t *ctx) {
if (!EVP_MD_CTX_reset(ctx->digest_ctx) ||
!EVP_DigestInit_ex(ctx->digest_ctx, EVP_sha512(), NULL)) {
handle_error(__func__);
}
}
void sha_destroy(sha_ctx_t *ctx) {
if (ctx) {
EVP_MD_CTX_free(ctx->digest_ctx);
free(ctx);
}
}