Files
AirplayServer/lib/raop_ntp.c
2020-04-19 14:49:21 +02:00

446 lines
15 KiB
C

/*
* Copyright (c) 2019 dsafa22 and 2014 Joakim Plate, modified by Florian Draschbacher,
* All Rights Reserved.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*/
// Some of the code in here comes from https://github.com/juhovh/shairplay/pull/25/files
#include <assert.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <stdbool.h>
#include "raop_ntp.h"
#include "threads.h"
#include "compat.h"
#include "netutils.h"
#include "byteutils.h"
#define RAOP_NTP_DATA_COUNT 8
#define RAOP_NTP_PHI_PPM 15ull // PPM
#define RAOP_NTP_R_RHO ((1ull << 32) / 1000u) // packet precision
#define RAOP_NTP_S_RHO ((1ull << 32) / 1000u) // system clock precision
#define RAOP_NTP_MAX_DIST ((1500ull << 32) / 1000u) // maximum allowed distance
#define RAOP_NTP_MAX_DISP ((16ull << 32)) // maximum dispersion
#define RAOP_NTP_CLOCK_BASE (2208988800ull << 32)
typedef struct raop_ntp_data_s {
uint64_t time; // The local wall clock time at time of ntp packet arrival
uint64_t dispersion;
int64_t delay; // The round trip delay
int64_t offset; // The difference between remote and local wall clock time
} raop_ntp_data_t;
struct raop_ntp_s {
logger_t *logger;
thread_handle_t thread;
mutex_handle_t run_mutex;
mutex_handle_t wait_mutex;
cond_handle_t wait_cond;
raop_ntp_data_t data[RAOP_NTP_DATA_COUNT];
int data_index;
// The clock sync params are periodically updated to the AirPlay client's NTP clock
mutex_handle_t sync_params_mutex;
int64_t sync_offset;
int64_t sync_dispersion;
int64_t sync_delay;
// Socket address of the AirPlay client
struct sockaddr_storage remote_saddr;
socklen_t remote_saddr_len;
// The remote port of the NTP server on the AirPlay client
unsigned short timing_rport;
// The local port of the NTP client on the AirPlay server
unsigned short timing_lport;
/* MUTEX LOCKED VARIABLES START */
/* These variables only edited mutex locked */
int running;
int joined;
// UDP socket
int tsock;
};
/*
* Used for sorting the data array by delay
*/
static int
raop_ntp_compare(const void* av, const void* bv)
{
const raop_ntp_data_t* a = (const raop_ntp_data_t*)av;
const raop_ntp_data_t* b = (const raop_ntp_data_t*)bv;
if (a->delay < b->delay) {
return -1;
} else if(a->delay > b->delay) {
return 1;
} else {
return 0;
}
}
static int
raop_ntp_parse_remote_address(raop_ntp_t *raop_ntp, const unsigned char *remote_addr, int remote_addr_len)
{
char current[25];
int family;
int ret;
assert(raop_ntp);
if (remote_addr_len == 4) {
family = AF_INET;
} else if (remote_addr_len == 16) {
family = AF_INET6;
} else {
return -1;
}
memset(current, 0, sizeof(current));
sprintf(current, "%d.%d.%d.%d", remote_addr[0], remote_addr[1], remote_addr[2], remote_addr[3]);
logger_log(raop_ntp->logger, LOGGER_DEBUG, "raop_ntp parse remote ip = %s", current);
ret = netutils_parse_address(family, current,
&raop_ntp->remote_saddr,
sizeof(raop_ntp->remote_saddr));
if (ret < 0) {
return -1;
}
raop_ntp->remote_saddr_len = ret;
return 0;
}
raop_ntp_t *raop_ntp_init(logger_t *logger, const unsigned char *remote_addr, int remote_addr_len, unsigned short timing_rport) {
raop_ntp_t *raop_ntp;
assert(logger);
raop_ntp = calloc(1, sizeof(raop_ntp_t));
if (!raop_ntp) {
return NULL;
}
raop_ntp->logger = logger;
raop_ntp->timing_rport = timing_rport;
if (raop_ntp_parse_remote_address(raop_ntp, remote_addr, remote_addr_len) < 0) {
free(raop_ntp);
return NULL;
}
// Set port on the remote address struct
((struct sockaddr_in *) &raop_ntp->remote_saddr)->sin_port = htons(timing_rport);
raop_ntp->running = 0;
raop_ntp->joined = 1;
uint64_t time = raop_ntp_get_local_time(raop_ntp);
for (int i = 0; i < RAOP_NTP_DATA_COUNT; ++i) {
raop_ntp->data[i].offset = 0ll;
raop_ntp->data[i].delay = RAOP_NTP_MAX_DISP;
raop_ntp->data[i].dispersion = RAOP_NTP_MAX_DISP;
raop_ntp->data[i].time = time;
}
raop_ntp->sync_delay = 0;
raop_ntp->sync_dispersion = 0;
raop_ntp->sync_offset = 0;
MUTEX_CREATE(raop_ntp->run_mutex);
MUTEX_CREATE(raop_ntp->wait_mutex);
COND_CREATE(raop_ntp->wait_cond);
MUTEX_CREATE(raop_ntp->sync_params_mutex);
return raop_ntp;
}
void
raop_ntp_destroy(raop_ntp_t *raop_ntp)
{
if (raop_ntp) {
raop_ntp_stop(raop_ntp);
MUTEX_DESTROY(raop_ntp->run_mutex);
MUTEX_DESTROY(raop_ntp->wait_mutex);
COND_DESTROY(raop_ntp->wait_cond);
MUTEX_DESTROY(raop_ntp->sync_params_mutex);
free(raop_ntp);
}
}
unsigned short raop_ntp_get_port(raop_ntp_t *raop_ntp) {
return raop_ntp->timing_lport;
}
static int
raop_ntp_init_socket(raop_ntp_t *raop_ntp, int use_ipv6)
{
int tsock = -1;
unsigned short tport = 0;
assert(raop_ntp);
tsock = netutils_init_socket(&tport, use_ipv6, 1);
if (tsock == -1) {
goto sockets_cleanup;
}
// We're calling recvfrom without knowing whether there is any data, so we need a timeout
struct timeval tv;
tv.tv_sec = 0;
tv.tv_usec = 3000;
if (setsockopt(tsock, SOL_SOCKET, SO_RCVTIMEO, &tv, sizeof(tv)) < 0) {
goto sockets_cleanup;
}
/* Set socket descriptors */
raop_ntp->tsock = tsock;
/* Set port values */
raop_ntp->timing_lport = tport;
return 0;
sockets_cleanup:
if (tsock != -1) closesocket(tsock);
return -1;
}
static THREAD_RETVAL
raop_ntp_thread(void *arg)
{
raop_ntp_t *raop_ntp = arg;
assert(raop_ntp);
unsigned char response[128];
int response_len;
unsigned char request[32] = {0x80, 0xd2, 0x00, 0x07, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};
raop_ntp_data_t data_sorted[RAOP_NTP_DATA_COUNT];
const unsigned two_pow_n[RAOP_NTP_DATA_COUNT] = {2, 4, 8, 16, 32, 64, 128, 256};
while (1) {
MUTEX_LOCK(raop_ntp->run_mutex);
if (!raop_ntp->running) {
MUTEX_UNLOCK(raop_ntp->run_mutex);
break;
}
MUTEX_UNLOCK(raop_ntp->run_mutex);
// Send request
uint64_t send_time = raop_ntp_get_local_time(raop_ntp);
byteutils_put_ntp_timestamp(request, 24, send_time);
int send_len = sendto(raop_ntp->tsock, (char *)request, sizeof(request), 0,
(struct sockaddr *) &raop_ntp->remote_saddr, raop_ntp->remote_saddr_len);
logger_log(raop_ntp->logger, LOGGER_DEBUG, "raop_ntp send_len = %d", send_len);
if (send_len < 0) {
logger_log(raop_ntp->logger, LOGGER_ERR, "raop_ntp error sending request");
break;
}
// Read response
response_len = recvfrom(raop_ntp->tsock, (char *)response, sizeof(response), 0,
(struct sockaddr *) &raop_ntp->remote_saddr, &raop_ntp->remote_saddr_len);
if (response_len < 0) {
logger_log(raop_ntp->logger, LOGGER_ERR, "raop_ntp receive timeout");
break;
}
logger_log(raop_ntp->logger, LOGGER_DEBUG, "raop_ntp receive time type_t packetlen = %d", response_len);
int64_t t3 = (int64_t) raop_ntp_get_local_time(raop_ntp);
// Local time of the client when the NTP request packet leaves the client
int64_t t0 = (int64_t) byteutils_get_ntp_timestamp(response, 8);
// Local time of the server when the NTP request packet arrives at the server
int64_t t1 = (int64_t) byteutils_get_ntp_timestamp(response, 16);
// Local time of the server when the response message leaves the server
int64_t t2 = (int64_t) byteutils_get_ntp_timestamp(response, 24);
// The iOS device sends its time in micro seconds relative to an arbitrary Epoch (the last boot).
// For a little bonus confusion, they add SECONDS_FROM_1900_TO_1970 * 1000000 us.
// This means we have to expect some rather huge offset, but its growth or shrink over time should be small.
raop_ntp->data_index = (raop_ntp->data_index + 1) % RAOP_NTP_DATA_COUNT;
raop_ntp->data[raop_ntp->data_index].time = t3;
raop_ntp->data[raop_ntp->data_index].offset = ((t1 - t0) + (t2 - t3)) / 2;
raop_ntp->data[raop_ntp->data_index].delay = ((t3 - t0) - (t2 - t1));
raop_ntp->data[raop_ntp->data_index].dispersion = RAOP_NTP_R_RHO + RAOP_NTP_S_RHO + (t3 - t0) * RAOP_NTP_PHI_PPM / 1000000u;
// Sort by delay
memcpy(data_sorted, raop_ntp->data, sizeof(data_sorted));
qsort(data_sorted, RAOP_NTP_DATA_COUNT, sizeof(data_sorted[0]), raop_ntp_compare);
uint64_t dispersion = 0ull;
int64_t offset = data_sorted[0].offset;
int64_t delay = data_sorted[RAOP_NTP_DATA_COUNT - 1].delay;
// Calculate dispersion
for(int i = 0; i < RAOP_NTP_DATA_COUNT; ++i) {
unsigned long long disp = raop_ntp->data[i].dispersion + (t3 - raop_ntp->data[i].time) * RAOP_NTP_PHI_PPM / 1000000u;
dispersion += disp / two_pow_n[i];
}
MUTEX_LOCK(raop_ntp->sync_params_mutex);
int64_t correction = offset - raop_ntp->sync_offset;
raop_ntp->sync_offset = offset;
raop_ntp->sync_dispersion = dispersion;
raop_ntp->sync_delay = delay;
MUTEX_UNLOCK(raop_ntp->sync_params_mutex);
logger_log(raop_ntp->logger, LOGGER_DEBUG, "raop_ntp sync correction = %lld", correction);
// Sleep for 3 seconds
struct timeval now;
struct timespec wait_time;
MUTEX_LOCK(raop_ntp->wait_mutex);
gettimeofday(&now, NULL);
wait_time.tv_sec = now.tv_sec + 3;
wait_time.tv_nsec = now.tv_usec * 1000;
pthread_cond_timedwait(&raop_ntp->wait_cond, &raop_ntp->wait_mutex, &wait_time);
MUTEX_UNLOCK(raop_ntp->wait_mutex);
}
// Ensure running reflects the actual state
MUTEX_LOCK(raop_ntp->run_mutex);
raop_ntp->running = false;
MUTEX_UNLOCK(raop_ntp->run_mutex);
logger_log(raop_ntp->logger, LOGGER_DEBUG, "raop_ntp exiting thread");
return 0;
}
void
raop_ntp_start(raop_ntp_t *raop_ntp, unsigned short *timing_lport)
{
logger_log(raop_ntp->logger, LOGGER_DEBUG, "raop_ntp starting time");
int use_ipv6 = 0;
assert(raop_ntp);
MUTEX_LOCK(raop_ntp->run_mutex);
if (raop_ntp->running || !raop_ntp->joined) {
MUTEX_UNLOCK(raop_ntp->run_mutex);
return;
}
/* Initialize ports and sockets */
if (raop_ntp->remote_saddr.ss_family == AF_INET6) {
use_ipv6 = 1;
}
use_ipv6 = 0;
if (raop_ntp_init_socket(raop_ntp, use_ipv6) < 0) {
logger_log(raop_ntp->logger, LOGGER_ERR, "raop_ntp initializing timing socket failed");
MUTEX_UNLOCK(raop_ntp->run_mutex);
return;
}
if (timing_lport) *timing_lport = raop_ntp->timing_lport;
/* Create the thread and initialize running values */
raop_ntp->running = 1;
raop_ntp->joined = 0;
THREAD_CREATE(raop_ntp->thread, raop_ntp_thread, raop_ntp);
MUTEX_UNLOCK(raop_ntp->run_mutex);
}
void
raop_ntp_stop(raop_ntp_t *raop_ntp)
{
assert(raop_ntp);
/* Check that we are running and thread is not
* joined (should never be while still running) */
MUTEX_LOCK(raop_ntp->run_mutex);
if (!raop_ntp->running || raop_ntp->joined) {
MUTEX_UNLOCK(raop_ntp->run_mutex);
return;
}
raop_ntp->running = 0;
MUTEX_UNLOCK(raop_ntp->run_mutex);
logger_log(raop_ntp->logger, LOGGER_DEBUG, "raop_ntp stopping time thread");
MUTEX_LOCK(raop_ntp->wait_mutex);
COND_SIGNAL(raop_ntp->wait_cond);
MUTEX_UNLOCK(raop_ntp->wait_mutex);
if (raop_ntp->tsock != -1) {
closesocket(raop_ntp->tsock);
raop_ntp->tsock = -1;
}
THREAD_JOIN(raop_ntp->thread);
logger_log(raop_ntp->logger, LOGGER_DEBUG, "raop_ntp stopped time thread");
/* Mark thread as joined */
MUTEX_LOCK(raop_ntp->run_mutex);
raop_ntp->joined = 1;
MUTEX_UNLOCK(raop_ntp->run_mutex);
}
/**
* Converts from a little endian ntp timestamp to micro seconds since the Unix epoch.
* Does the same thing as byteutils_get_ntp_timestamp, except its input is an uint64_t
* and expected to already be in little endian.
* Please note this just converts to a different representation, the clock remains the
* same.
*/
uint64_t raop_ntp_timestamp_to_micro_seconds(uint64_t ntp_timestamp, bool account_for_epoch_diff) {
uint64_t seconds = ((ntp_timestamp >> 32) & 0xffffffff) - (account_for_epoch_diff ? SECONDS_FROM_1900_TO_1970 : 0);
uint64_t fraction = (ntp_timestamp & 0xffffffff);
return (seconds * 1000000) + ((fraction * 1000000) >> 32);
}
/**
* Returns the current time in micro seconds according to the local wall clock.
* The system Unix time is used as the local wall clock.
*/
uint64_t raop_ntp_get_local_time(raop_ntp_t *raop_ntp) {
struct timespec time;
clock_gettime(CLOCK_REALTIME, &time);
return (uint64_t)time.tv_sec * 1000000L + (uint64_t)(time.tv_nsec / 1000);
}
/**
* Returns the current time in micro seconds according to the remote wall clock.
*/
uint64_t raop_ntp_get_remote_time(raop_ntp_t *raop_ntp) {
MUTEX_LOCK(raop_ntp->sync_params_mutex);
int64_t offset = raop_ntp->sync_offset;
MUTEX_UNLOCK(raop_ntp->sync_params_mutex);
return (uint64_t) ((int64_t) raop_ntp_get_local_time(raop_ntp)) + ((int64_t) offset);
}
/**
* Returns the local wall clock time in micro seconds for the given point in remote clock time
*/
uint64_t raop_ntp_convert_remote_time(raop_ntp_t *raop_ntp, uint64_t remote_time) {
MUTEX_LOCK(raop_ntp->sync_params_mutex);
uint64_t offset = raop_ntp->sync_offset;
MUTEX_UNLOCK(raop_ntp->sync_params_mutex);
return (uint64_t) ((int64_t) remote_time) - ((int64_t) offset);
}
/**
* Returns the remote wall clock time in micro seconds for the given point in local clock time
*/
uint64_t raop_ntp_convert_local_time(raop_ntp_t *raop_ntp, uint64_t local_time) {
MUTEX_LOCK(raop_ntp->sync_params_mutex);
uint64_t offset = raop_ntp->sync_offset;
MUTEX_UNLOCK(raop_ntp->sync_params_mutex);
return (uint64_t) ((int64_t) local_time) + ((int64_t) offset);
}